3.881 \(\int \frac {x^3}{(a+b x^6)^2 \sqrt {c+d x^6}} \, dx\)

Optimal. Leaf size=64 \[ \frac {x^4 \sqrt {\frac {d x^6}{c}+1} F_1\left (\frac {2}{3};2,\frac {1}{2};\frac {5}{3};-\frac {b x^6}{a},-\frac {d x^6}{c}\right )}{4 a^2 \sqrt {c+d x^6}} \]

[Out]

1/4*x^4*AppellF1(2/3,2,1/2,5/3,-b*x^6/a,-d*x^6/c)*(1+d*x^6/c)^(1/2)/a^2/(d*x^6+c)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.07, antiderivative size = 64, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {465, 511, 510} \[ \frac {x^4 \sqrt {\frac {d x^6}{c}+1} F_1\left (\frac {2}{3};2,\frac {1}{2};\frac {5}{3};-\frac {b x^6}{a},-\frac {d x^6}{c}\right )}{4 a^2 \sqrt {c+d x^6}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/((a + b*x^6)^2*Sqrt[c + d*x^6]),x]

[Out]

(x^4*Sqrt[1 + (d*x^6)/c]*AppellF1[2/3, 2, 1/2, 5/3, -((b*x^6)/a), -((d*x^6)/c)])/(4*a^2*Sqrt[c + d*x^6])

Rule 465

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> With[{k = GCD[m + 1,
n]}, Dist[1/k, Subst[Int[x^((m + 1)/k - 1)*(a + b*x^(n/k))^p*(c + d*x^(n/k))^q, x], x, x^k], x] /; k != 1] /;
FreeQ[{a, b, c, d, p, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && IntegerQ[m]

Rule 510

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(a^p*c^q
*(e*x)^(m + 1)*AppellF1[(m + 1)/n, -p, -q, 1 + (m + 1)/n, -((b*x^n)/a), -((d*x^n)/c)])/(e*(m + 1)), x] /; Free
Q[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] && (IntegerQ[p] || GtQ[a
, 0]) && (IntegerQ[q] || GtQ[c, 0])

Rule 511

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Dist[(a^IntPa
rt[p]*(a + b*x^n)^FracPart[p])/(1 + (b*x^n)/a)^FracPart[p], Int[(e*x)^m*(1 + (b*x^n)/a)^p*(c + d*x^n)^q, x], x
] /; FreeQ[{a, b, c, d, e, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && NeQ[m, -1] && NeQ[m, n - 1] &&  !(IntegerQ[
p] || GtQ[a, 0])

Rubi steps

\begin {align*} \int \frac {x^3}{\left (a+b x^6\right )^2 \sqrt {c+d x^6}} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {x}{\left (a+b x^3\right )^2 \sqrt {c+d x^3}} \, dx,x,x^2\right )\\ &=\frac {\sqrt {1+\frac {d x^6}{c}} \operatorname {Subst}\left (\int \frac {x}{\left (a+b x^3\right )^2 \sqrt {1+\frac {d x^3}{c}}} \, dx,x,x^2\right )}{2 \sqrt {c+d x^6}}\\ &=\frac {x^4 \sqrt {1+\frac {d x^6}{c}} F_1\left (\frac {2}{3};2,\frac {1}{2};\frac {5}{3};-\frac {b x^6}{a},-\frac {d x^6}{c}\right )}{4 a^2 \sqrt {c+d x^6}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.24, size = 168, normalized size = 2.62 \[ -\frac {x^4 \left (b d x^6 \left (a+b x^6\right ) \sqrt {\frac {d x^6}{c}+1} F_1\left (\frac {5}{3};\frac {1}{2},1;\frac {8}{3};-\frac {d x^6}{c},-\frac {b x^6}{a}\right )-5 \left (a+b x^6\right ) \sqrt {\frac {d x^6}{c}+1} (b c-3 a d) F_1\left (\frac {2}{3};\frac {1}{2},1;\frac {5}{3};-\frac {d x^6}{c},-\frac {b x^6}{a}\right )-10 a b \left (c+d x^6\right )\right )}{60 a^2 \left (a+b x^6\right ) \sqrt {c+d x^6} (b c-a d)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[x^3/((a + b*x^6)^2*Sqrt[c + d*x^6]),x]

[Out]

-1/60*(x^4*(-10*a*b*(c + d*x^6) - 5*(b*c - 3*a*d)*(a + b*x^6)*Sqrt[1 + (d*x^6)/c]*AppellF1[2/3, 1/2, 1, 5/3, -
((d*x^6)/c), -((b*x^6)/a)] + b*d*x^6*(a + b*x^6)*Sqrt[1 + (d*x^6)/c]*AppellF1[5/3, 1/2, 1, 8/3, -((d*x^6)/c),
-((b*x^6)/a)]))/(a^2*(b*c - a*d)*(a + b*x^6)*Sqrt[c + d*x^6])

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{{\left (b x^{6} + a\right )}^{2} \sqrt {d x^{6} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="giac")

[Out]

integrate(x^3/((b*x^6 + a)^2*sqrt(d*x^6 + c)), x)

________________________________________________________________________________________

maple [F]  time = 0.64, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (b \,x^{6}+a \right )^{2} \sqrt {d \,x^{6}+c}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(b*x^6+a)^2/(d*x^6+c)^(1/2),x)

[Out]

int(x^3/(b*x^6+a)^2/(d*x^6+c)^(1/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{{\left (b x^{6} + a\right )}^{2} \sqrt {d x^{6} + c}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(b*x^6+a)^2/(d*x^6+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(x^3/((b*x^6 + a)^2*sqrt(d*x^6 + c)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {x^3}{{\left (b\,x^6+a\right )}^2\,\sqrt {d\,x^6+c}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/((a + b*x^6)^2*(c + d*x^6)^(1/2)),x)

[Out]

int(x^3/((a + b*x^6)^2*(c + d*x^6)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {x^{3}}{\left (a + b x^{6}\right )^{2} \sqrt {c + d x^{6}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(b*x**6+a)**2/(d*x**6+c)**(1/2),x)

[Out]

Integral(x**3/((a + b*x**6)**2*sqrt(c + d*x**6)), x)

________________________________________________________________________________________